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J. Koch, 9/2/11

Volume and surface area of a spherical harmonic surface approximation to a
NIF implosion core defined by HGXI/GXD images from the equator and pole

A solid object, such as a simplified approximation to an implosion core
defined by the 17% intensity contour, can be described by a sum of spherical
harmonics, following the notation of Butkov (Mathematical Physics, ISBN 0-201-
00727-4, 1968; there are other notations so care is required):
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with Pi(x) being the usual (apparently standard) Legendre polynomial. For the
present purposes, finding the volume and surface area of an implosion core defined
by PO, P2, P4, M0, and M4, | will restrict the problem to consider only Aoo, A2o, A4o,
and As4, with the phase angle set to eliminate the sin(m¢) term. Once the volume
and surface area are determined, I will explore how these coefficients relate to
measured quantities A0, A2/A0, A4/A0, MO, and M4/MO.

Using the above definitions, I can explicitly write the functions of interest:
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Therefore, I can write r(0,¢) explicitly as well:
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The volume enclosed within a surface defined by r(6,¢), and the area of that
surface (http://ciks.cbt.nist.gov/~garbocz/paper134/node4.html), can be written
as:
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I. Volume

The volume integral can be written as:
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The second and fourth terms vanish, and the remainder can be written as:
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The second term can be written as:
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so the complete volume integral becomes:
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Now, with experimental data we fit 2D implosion images to Legendre polynomials
and Fourier modes from the equatorial and polar views respectively:
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Considering the full spherical harmonic shape defined above in terms of A, B, C and
D, and neglecting the impact of m4 on the equatorial view (which averages to zero,
but generally will depend on the azimuth of the equatorial view), we can identify the
terms as:
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Finally, separating out AQ and rewriting, we have:
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This is a cumbersome equation to manipulate, but it is simple to program into a
calculator or an Excel spreadsheet.

I. Surface Area

The surface area integral will in general be impossible to solve analytically,
so from the start [ will aim to solve it numerically. The integral is:
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Taking the derivatives and rearranging, this is:
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where q, B, y and 0 are defined above. This equation can be solved numerically in
various ways, and a FORTRAN code example is shown below:

program surfacevolume
pi = acos(-1.0)
c
a0 = 20.879
p2 = -0.212
pd = 0.067
xm4 = 0.112
alpha = 1.0-p2/2.0+3.0*p4/8.0
beta = 3.0* (p2-5.0*p4/2.0)/2.0
gamma = 35.0*p4/8.0
delta = (1.0-p2/2.0+3.0*p4/8.0) *xm4
c
n = 1000
m = 1000
deltax = pi/n
deltay = 2.0*pi/m
area = 0.0
c
do 100 i=1,n-1
x = i*deltax
do 200 j=1,m-1
y = j*deltay
r = alphatbeta*cos (x)**2+gamma*cos (x) **4+delta*sin (x) **4*
> cos (4.0*y)
dphi = -4.0*delta*sin(x)**4*sin(4.0*y)
dth = -2.0*sin(x) *cos (x) * (beta+2.0*gamma*cos (x) **2-
> 2.0*delta*sin(x) **2*cos (4.0*y))
area = area + r*sqrt(dphi**2+dth**2*sin(x) **2+r**2%*
> sin(x) **2)
200 continue
100 continue
area = area*deltax*deltay/ (4.0*pi)
c
volume = alpha**2* (alpha+beta)+(3.0*alpha/5.0+gamma/3.0) *
> (alpha*gammat+beta**2)+beta* (6.0*alpha*gamma+beta**2)/7.0+
> gamma**2* (3.0*beta/11.0+gamma/13.0)+64.0*delta**2* (alpha+
> beta/11.0+3.0*gamma/143.0)/105.0
write(6,*) 'volume = ',volume* (4.0*pi*a0**3/3.0),
> 'volume multiplier = ',volume,' radius multipler = ',
> volume**(0.3333333
write(6,*) 'surface area = ',area*4.0*pi*al0**2,
> 'area multiplier = ',area,' radius multipler = ',area**0.5
c
pause 'hit cr'
end

The numerical results from this program agree with analytical and numerical results
[ have previously obtained considering only P2, and also considering only M4.



II1. Relationship to spherical harmonics coefficients

Finally, I can write the spherical harmonics coefficients defined above in
terms of the measured quantities:
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